Search results

Search for "focused ion beams" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • method for nanofabrication such as FIB, which also happens to cover the low-energy interaction regime. The method is widely available as a complement to scanning electron microscopes. Focused ion beams allow for both subtractive and additive nanoscale manufacturing [31] and can also be used for chemical
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • possible, which includes a minimization of the thickness of the amorphous layer. Focused ion beams of such low energy are generally hard to achieve due to the difficulty of focusing. Some current instruments can utilize focused beams of 500 eV to perform chemical analysis of materials [21], and it is
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.13.86 Abstract Focused ion beams (FIB) are a common tool in nanotechnology for surface analysis, sample preparation for electron microscopy and atom probe tomography, surface patterning, nanolithography, nanomachining, and
  • sputtered largely depends on the incidence angle. This fraction is the largest for incidence angles between 70 and 80° defined with respect to the sample surface. Overall, it changes from 25% to 65%. Keywords: angle dependency; argon ions; contamination; focused ion beams; ion bombardment; low energy
  • ; molecular dynamics; silicon; simulations; water; Introduction Focused ion beams (FIB) play an increasingly important role in materials research areas such as nanoanalysis (e.g., secondary ion mass spectrometry (SIMS) [1][2][3] and sample preparation for transmission electron microscopy (TEM) [4], atom
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • either solid-state gears or molecular gears, which are created by top-down approaches (e.g., using focused ion beams [23] or electron beams [24][25] to etch the substrate) or bottom-up approaches such as chemical synthesis [26][27]. The ultimate goal for those miniaturized gears is to implement nanoscale
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • nanometer range is heavily sought after. One promising candidate for ultraprecise nanofabrication is focused ion beam (FIB) machining. Focused ion beams locally remove material based on physical sputtering with a large degree of flexibility due to advanced beam control. FIB patterning is a direct single
  • -based devices encoding bits using nanoscale domain walls or skyrmions [4]. The magnetic properties of thin magnetic films and multilayers can directly be modified in a controlled manner by low-dose ion irradiation. Local variation of the dose using masks or focused ion beams leads to pure magnetic
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • , HIM is not just an imaging technique. The ability to use the instrument for milling biological objects as small as viruses offers unique opportunities which are not possible with more conventional focused ion beams, such as gallium. Several pioneering technical developments, such as methods to couple
PDF
Album
Review
Published 04 Jan 2021

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • junctions in high-temperature superconductors [11]. Although HIM is highly suitable for imaging and nanometer-scale patterning, there is a need of focused ion beams other than helium or neon with comparable properties. Alternative developments were made using laser-cooled magneto-optical trap ion sources
PDF
Album
Full Research Paper
Published 18 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • irradiation-induced mechanical strain in the patterning process are elaborated and discussed. Keywords: direct patterning; focused helium ion beam; out-of-plane nanopatterning; polymers; thin films; Introduction Micro- and nanofabrication with focused ion beams (FIBs) is currently a subject of strong
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • sensor applications [3][4][5], for stray field design [6][7] and particle transport in lab-on-chip systems [8][9][10][11], or in spintronics and magnonics [12][13][14]. Currently available techniques for domain patterning are either based on focused ion beams (FIB) [15][16][17], ion implantation [18][19
PDF
Album
Full Research Paper
Published 03 Dec 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • alternative FZP fabrication techniques gained some attraction thanks to the improvements in layer deposition [15][16][17][18][19][20][21][22][23][24][25], etching methods [26], and fabrication methods based on focused ion beams [18][21][27][28][29][30][31]. One particular implementation of focused ion beams
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the
  • ; Introduction Focused ion beams (FIBs) have been increasingly exploited in nanotechnology for more than 40 years [1]. One of the most important parameters of FIBs in this respect is the beam diameter near the focal point. The most commonly used method for estimating the beam size is measuring a characteristic
  • good agreement with previously reported values [14]. Helium focused ion beams are characterized in a similar way to determine the previously unknown profile and possible asymmetries in it. Under certain conditions triangular He beam shapes are observed, possibly attributable to the trimer nature of the
PDF
Album
Full Research Paper
Published 23 Mar 2017
Other Beilstein-Institut Open Science Activities